

Renewable powertrains of trucks

- Zero and low-emission vehicles are gaining interest in the transport industry to get rid of fossil fuel dependency and decrease emissions
- Gas and BEV the most developed options hydrogen trucks still catching up
 - Globally there are around 8000 medium- and heavy-duty trucks compared to 300 000 electric trucks¹
 - Transport represents less than 1% of the total global hydrogen usage²
 - Both ICE and FCEV options with different benefits

2: IEA – Global Hydrogen Review 2022

21/11/2023 VTT – beyond the obvious

Global hydrogen vehicle market

- Most FCEV located in Asia (mostly China)
- 20% of FCEV located in China
 - consume more than a half of the hydrogen used in road transport
- Hydrogen use in the transport sector (especially heavy-duty) increasing significantly but represents only a small part of the whole hydrogen demand

Figure 2.6 Hydrogen consumption in road transport by vehicle segment and region, 2020-2022 35 kt hydrogen 20 15 10 2020 2021 2022 2020 2021 2022 ■ Commercial vehicles ■China ■Europe ■US ■Japan ■Korea ■RoW

Notes: RoW = Rest of World; US = United States. Commercial vehicles include light commercial vehicles and medium- and heavy-duty trucks. Assumptions on annual mileage and fuel economy have been updated to match the IEA Global Energy and Climate Model.

Global Hydrogen Review 2023 - IEA

Hydrogen trucks in use

<u>https://fuelcelltrucks.eu/project/</u> - heavy-duty trucks using hydrogen mapped

Why hydrogen trucks?

- Classified as zero-emission (both H2ICE and FCEV)¹
- More suitable to long haul and heavy loads than BEV
- AFIR available hydrogen infrastructure in the future (also for heavy-duty?)

Heavy-duty fuel cell electric truck models, 2022

Make	Model	Range (km)	Year available
Hyundai	XCIENT	400	2019
Hyzon	<u>Hymax</u>	400-680*	2021
Hyzon	FCET 8	800	2021
Dayun	<u>E8</u>	310	2021
Dayun	<u>E9</u>	430	2021
Skywell	<u>TP11</u>	500	2021
FAW	<u>J7</u>	700	2022
Feichi	FSQ4250	500	2022
King Long	KLQ4250FCEV3	510	2022
SAIC	CQ1180FCEVEQ		2022
Shaanxi	<u>X5000</u>		2022
Dongfeng	<u>LZ5180</u>	460	2022
Hyundai	HDC-6	1 280	2023
Kenworth	<u>T680</u>	480	2023
Nikola	<u>Tre</u>	800	2023
Nikola	Two	1 450	2024

Ranges given for the 24-, 46-, and 70-tonne configurations. Source: CALSTART (2022), Drive to Zero's Zero-emission Technology Inventory (ZETI) Tool Version 7.0

^{1:} H2ICE results NOx emissions due to combustion

Heavy-duty transport in Finland

- Over 99% of the Finnish heavy-duty truck fleet are diesel-based
- Gas trucks make up the greatest portion of low- or zero-emission trucks (0,05%)
 - Only a handful of BEV trucks in use

SKAL – Raskaan liikenteen käyttövoimasiirtymän tilannekuva 2023

Kuljetussuorite kuljetusetäisyyden mukaan, 2021, km

Kotimaan kuorma-autoliikenteen kuljetussuorite kuljetusetäisyyden mukaan jaoteltuna (ilman maa-aineskuljetuksia). Lähde: Tilastokeskus.

Kuljetussuorite kokonaismassaluokan mukaan, 2021

SKAL – Raskaan liikenteen käyttövoimasiirtymän tilannekuva 2023

~70% of deliveries are carried out by trucks over 60t

Hydrogen as a powertrain in trucks

Efficiencies¹

- FCEV has the best potential efficiency of around 60% compared to H2ICE and diesel (45-50% peak efficiency)
- H2ICE and diesel have similar efficiencies, small variation exists

Costs²

 The cost of a H2ICE truck ~1,5 times and a FCEV tractor ~2 times that of diesel (BEV cost is slightly more than 2 times the cost of diesel)

Fuel consumption¹

- FCEV has a high possible efficiency would result in fuel savings of around 20% compared to diesel
- H2ICE would consume around 15-20% more fuel than diesel

 cheap hydrogen required

^{1:} https://www.energy.gov/sites/default/files/2023-03/h2iqhour-02222023.pdf & insight from Jari Ihonen

^{2:} Hydrogen Insight 2023 - Why the world needs hydrogen combustion engines — even though they're so inefficient

Summary

- Only small amounts of hydrogen currently used in heavy-duty transport the amount increasing especially in China
- Hydrogen infrastructure going to increase with AFIR in 2030 at least for light vehicles
- Hydrogen-powered trucks suitable for long haul applications with long mileages and heavy loads – compared to BEV
- Cheap hydrogen and low costs needed for H2ICE and FCEV uptake
 - Cheap renewable electricity required for hydrogen production

Contact information

Aleksandra Saarikoski aleksandra.saarikoski @vtt.fi +358505958964